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The present study considers a space radiator with uniform area fins standing vertically on 
a nonisothermal parent surface to enhance heat transfer. The numerical study shows that 
the finned radiator exhibits an optimum number of fins for which the heat lost from the 
finned radiator is a maximum, for given values of NR_c, NF_C, E, and ropT. The numerical 
data has been used to derive correlations, respectively, between the optimum heat loss 
ratio and the optimum fin number with the other influencing parameters. These formulas 
are useful to the designer for a quick calculation of the performance of the optimum 
configuration. 
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Introduction 

In the design of spacecraft, one important problem that needs 
great attention is the dissipation of waste heat generated from 
power plants, from operation of equipment, and from other 
heat-generating units. Since- radiation is the only mode of heat 
transport in space, a heat exchanger with extended surface fins 
offers the best means of increasing heat rejection from the 
system. Most of the work in the area of radiating fins with 
mutual interaction was developed between 1959 and 1963. 
Different radiator configurations were taken up by these 
researchers, e.g., the annular finned radiator and parallel pipes 
joined by webs acting as fins. Mackay (1963) and Karleker and 
Chao (1963) considered trapezoidal fins in great detail, of which 
the rectangular profile is a particular case. Mackay developed 
a numerical computation technique for designing space 
radiators with the assumption of a constant base temperature 
neglecting mutual irradiation. Sparrow et al. (1961) and 
Karleker and Chao (1963), although considering the mutual 
interaction between the fins, neglected the base interaction for 
a radiator with longitudinal fins on a cylindrical base. Base-fin 
interaction has been considered in some detail by Sparrow 
and Eckert (1962b). They drew attention to the fact that mutual 
base-fin interaction reduces total heat loss from the system 
significantly. A very penetrating and detailed analysis with 
respect to optimizing radiator mass has been provided by 
Karleker and Chao (1963). 

Schnurr et al. (1974) considered circular fins of trapezoidal 
profile, and in 1976 they again considered circular fins of 
rectangular profiles, in both cases taking into account the 
base-fin interaction and mutual irradiation between fins. 
Tanaka et al. (1987) considered cases of nonisothermal surfaces 
but with convection. Unfortunately, all the studies carried out 
until now assume a constant base temperature that is valid for 
a condenser or an evaporator, thus conveniently avoiding a 
great deal of numerical difficulty but entertaining a large 
amount of tolerance in the optimized design. It is here the 
relevance of the present study comes in to picture. 
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In the present work, consideration is given to a radiator with 
rectangular fins that stand vertically, adjacent to each other, on 
a common nonisothermal parent surface that forms a side of a 
duct carrying hot fluid. The temperature of the fluid flow 
varies continuously along the duct, thus giving rise to a 
continuous change of the temperatures at the base of the fins, 
This geometry involves interaction between a fin with a base 
of continuously varying temperature, neighboring fins, and the 
ambient. The entire heat exchanger has to be treated as one 
system because of the conjugate nature of the problem. 
Temperatures and radiosities are to be obtained for all the 
surfaces making up the radiator. When radiation is combined 
with convection/conduction, the presence of both differential 
and integral terms having different powers leads to a set of 
nonlinear integrodifferential equations. The solution of the 
problem is complicated and time consuming The massive 
expenditure and the high risks involved in the design of a space 
radiator, which is an integral part of space systems, make such 
comprehensive methods of analysis a necessity. A new term, 
heat loss ratio-the ratio of the heat lost by the finned radiator 
to the heat lost by the unfinned radiator, (qr~/q&---has been 
introduced, and its dependence on the radiation-conduction 
parameter, the increase in weight due to the addition of fins, 
and the number of fins, etc., have been studied. The existence 
of an optimum fin number for maximizing the heat loss ratio 
has also been established. Finally, a correlation has been given 
that quickly determines the maximum heat loss ratio as a 
function of various influencing parameters. 

Some background to the present study 

The first and most important issue is the relevance of the 
optimization that has been undertaken in the paper. It is 
commonly felt that optimum performance would be obtained 
for a black surface without fins. This question is addressed 
below by taking a specific example of a radiator with a single 
fin. 

Example 

Figure la shows a surface at temperature T, and emissivity 
E that is losing heat by radiation to a background effectively at 
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Figure 1 (a) Isothermal parent surface 
Figure 1 (b) Parent surface with one fin added, all surfaces being 
isothermal 

0 K. Figure lb shows the configuration obtained by adding a 
surface. of length H and surface emissivity z to it at the middle 
and making a right angle with the parent surface. For 
simplicity, it is assumed that this surface is of infinite thermal 
conductivity and is of very small thickness. All the surfaces in 
configuration lb are thus at T,. 

Configuration la loses an amount of heat per unit time and 
unit length in a direction perpendicular to the plane of the 
figure, given by 

Qla = E’a. T4,*L (1) 

In the case of configuration lb, we effectively have two 
enclosures formed as indicated by the dashed outlines and the 
basic surfaces. If we assume radiosities of the surfaces to be 
uniform (for simplicity), a simple enclosure analysis is possible. 
Figure 2 shows one such enclosure. Two zones are identified 
as indicated thereon. Zone 1 consists of the entire physical 
surface and zone 2 the opening of the triangular cavity. The 
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/ 
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Figure 2 The two zones for analyzing the example problem 

requisite view factors are obtained by view-factor algebra. We 
have, from purely geometric arguments, 

F,, = 1, 
F _ (1 + (2H/L)2)1’2 

12 - 

(1 + 2H/L) ’ 
F,, = (1 - F,,) (2) 

The radiosity of opening Jz = 0. The radiosity J, of the 
physical surface is given by 

J, = &.a.Tz + (1 - E)*F~~.J~ 

or, rearranging, 

J, = 
E.a’T”, 

Cl - (1 - E).Flll 
(3) 

The heat flux on the opening (zone 2) is given by 

q2 = (Jz - F,, . JI) 
= -e.a.T$/[l - (1 - .s).FI1] (4) 

Notation 

dcFp 
Specific heat of the tluid, J/kg * K 
Diffuse view factor area product per unit width, 
m2/m 

Fij Diffuse view factor between zones i and j 

!i 
Irradiation, W/m2 
Fin height, m 

k Thermal conductivity of the fin material, W/m. K 
L Length of the radiator, m 
m Mass flow of fluid, kg/m. s 
n Number of fins 
4 Number of nodes along the fin 

:s-c 
Number of nodes along the base 
Black-body fin radiation conduction interaction 
parameter, nondimensional 
= (aTf$)/k 

Ni Radiation conduction interaction parameter for 
fin i, nondimensional 
= (8. a. Tii H2)/(k. 2t,) 

NF-C Convection conduction interaction parameter, 
nondimensional = (m . Cp)/k 

N, _ F Radiation convection interaction parameter, non- 
dimensional = (.s * a. Ti. L)/(m - Cp) 

&l-cl Radiation conduction interaction parameter for 
the heat exchanger, nondimensional, (a- Tf,, . L/k) 

4 Heat loss from the radiator per unit width, W/m 
rOPT Scaled optimum fin number parameter, non- 

dimensional, (nom. H)/L 
S Spacing between the fins, m 
S Length of the hypotenuse shown in Figure 4, m 
2r, Fin thickness, m 
T Fin temperature, K 

Tb Base temperature, K 
Ti, Fluid temperature at inlet, K 
T, Temperature of all the surfaces in Figures la and 

lb, K 
x Coordinate variable along the base, m 
Y Coordinate variable along the fin, m 

Greek symbols 

B Nondimensional heat loss from the unfinned 
radiator, qurr. /(E . a. Tfn. L) 

E Emissivity of all exposed radiating surfaces 
Stefan-Boltzman constant, 5.67 x 10-s W/mZ. K4 

e” Nondimensional temperature, T/T,,, 

: 
Nondimensional coordinate along the fin, y/H 
Heat loss ratio = qr,/q,,,, nondimensional 

Subscripts 

b Base 
fr Finned radiator 
i Fin number 
j Base between ith fin and i + lth fin 
L Left surface of the fin 
R Right surface of the fin 
Ax Area element on the base 
AY Area element on the fin 
OPT Optimum value 
max Maximum value 
ufr Unfinned radiator 
cc Environmental condition 
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1.60 

Emissivity,& 

Figure 3 Emissivity vs. radiator effectiveness for a single isother- 
mal fin system 

Hence the heat loss from the two enclosures put together is 

Qz = (2). (opening area) * (- q2) 

= (2). (HZ + L2/4)“2 * & * Q. 7-t 
Cl - (1 - 4.F111 

(5) 

= (&*a.Tz*L). 
[l + (,,)*I”* 

1 -(l-s). 1 -“;‘:;$;i’*} 
1 

(using Equation 2) (6) 

We may define the heat loss ratio (4) as 

4= 
Heat loss with fin 

Heat loss without fin 

4= 
[ 1 + (2H/L)2]“2 

l-(1-&)’ l- 
{ 

[l + (2H/L)2]“2 

(1 + 2H/L) 1 

(7) 

It is seen that the heat loss ratio is invariably greater than 
or equal to unity. Specifically, for E = 1, C#J tends to 
[ 1 + (2H/L)2]“2 which is a consequence of the geometric 
increase in the effective area of the radiator. 

It is to be noted that, in real life, the finite conductivity of 
the fins and the consequent temperature variation along it will 
reduce 4 to a lower value. Equation 7 represents the upper 
limit to the advantage that is gained by the use of the fin. 

We may also define a radiator effectiveness based on the 
parent surface at T, and E = 1. This is simply given by (s .tj). 
A plot of the radiator effectiveness as a function of E is shown 
in Figure 3 for 2H/L = 1 and infinite thermal conductivity. It 
is seen from this figure that the radiator effectiveness has an 
upper bound of [l + (2H/L)*]l’* = 1.414 and that E = 0.63 
represents the break-even point when the radiator loses the 
same amount of heat as the parent black surface. For E > 0.63, 
the finned radiator loses more heat than the parent black 
surface. 

In the case of a finite-thermal-conductivity fin, the 
temperature reduces monotonically from T, at the base (in 
contact with the parent surface). The radiation interaction 
tends to reduce the temperature variation, while the conduction 
along the fin sets up a temperature variation along it. The fin 
length determines the relative effects of these two processes. 

Whereas Equation 7 shows a monotonic increase of heat loss 
ratio with H, the radiation+onduction interaction will lead to 
a compromise that makes it increase initially with increasing 
H, achieve a maximum at a certain H, and then decrease with 
further increase in H. Hence one expects an optimum 4 for the 
simple finned radiator with a constant base temperature. 

Finned-radiator case 

In the case of the finned radiator considered in our paper, there 
are some differences due to the variation of temperature along 
the radiator and also along the fins. The two end fins 
correspond to the case considered above, and each has an 
increased effective “opening area,” as shown in Figure 4 by the 
hypotenuse of length S’. Hence they have the dual advantage 
of an area increase of “opening” to the surroundings and the 
cavity effect, which increases the effective emissivity of the 
“opening.” However, because of the temperature variation 
alluded to above, the cavity effect is reduced from the value that 
would have occurred if the system was isothermal. The 
intermediate fins involve the cavity effect, which increases the 
apparent emissivity of the opening. This state of affairs is 
indicated in Figure 4. 

Existence of an optimum 

Existence of an optimum fin number is a consequence of the 
following: 

(1) the effects discussed above including the increase of the 
opening area of end fins in the radiator; 

(2) cavity effect improves with closer spacing, leading to an 
enhanced effective emissivity; and 

(3) temperature variation along the fin is affected by the 
spacing and fin height H to a significant extent. 

In view of these facts, one would expect an optimum in the 
heat loss ratio. Also note that the parent radiator without fin 
would lose less heat than an isothermal parent surface. This is 
given by the quantity jl later on in the paper. 

The main point here is that the radiator without fin and 
E = 1 does no lose the maximum heat, as is commonly felt. 

Statement of the problem 

The radiator under consideration is a rectangular duct losing 
heat from one side only, on which stand vertically rectangular 
profiled fins. The base lengths left of the first and right of the 
last fins are selected such that they are equal to half the spacing 
between any two intermediate fins (see Figure 5). All the 
surfaces are diffuse and have a uniform emissivity of E. In 
general, heat transfer characteristics of a radiator are very 
complex. In condensers, the fluid temperature is uniform and 
constant from entrance to exit. But in radiators, this is not so. 

Figure 4 Radiator fin ensemble showing the nature of heat transfer 
enhancement for the middle and end fins 
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Figure 5 Radiator configuration considered in the present study. 
The geometry is defined and the elements used in making the energy 
balance are shown 

The temperature variation of the base is, however, generally 
neglected in solving such problems, for simplicity. The inclusion 
of the variation of temperature complicates the calculation in 
two ways: (1) the symmetry assumption used otherwise is ruled 
out, and all the fins in the radiator will have to be treated 
individually; and (2) the temperature variation along each fin 
surface of the assembly will have to be evaluated separately. 
Hence, for each fin in the space radiator, we have two equations 
for the incident radiant flux for irradiation, one for the left and 
the other for the right surface. The energy equation on the fluid 
side also has to be included, since the problem is of conjugate 
nature. Essentially the problem is one in which the base 
temperature, Tb, is varying along the radiator. 

Assumptions 

(1) Heat loss from the surface is only by radiation. 
(2) Uniform conditions exist in the environment, which is 

characterized by a temperature of ‘i”, K. 
(3) Material and surface properties of the radiator are constant 

and independent of temperature. 
(4) The entire formulation of the problem is in the steady state. 
(5) The local temperature of the fins is assumed to be constant 

across its thickness 2t,. 
(6) Hence the fin heat transfer is treated basically as 

one-dimensional (1-D) and temperature variation is only in 
the Y-direction. 

(7) The radiator and the fin width are very large so that the end 
effects are negligible. At the tip, the heat conducted is 
equated to the heat lost by radiation. 

(8) Resistance of the walls and the film on the liquid side of 
the heat exchanger are negligible, since the normally used 
fluids like the liquid metals have high heat transfer 
coefficients. Fluid flow is fully developed, and local fluid 
bulk temperature is assumed to be equal to the local base 
temperature. 

Formulation 

For the analysis of each fin, consider two enclosures, the left 
one comprising the left surface of the fin being considered, the 
right surface of the adjacent fin, the intermediate base, and the 
ambient, which is considered as a black body at an equivalent 
temperature of T, K (Figure 6). Similarly, a right enclosure is 
drawn up. The governing equation for heat transfer in each fin 
will have two integral equations with slight modification for 
the first and last fins. The energy equation for the ith radiating- 
conducting fin is given by the following differential equation in the 

nondiinionalized form 

d2ei/dt2 = N,. 0: - 

with boundary conditions 

(i) d&/d{ = -(&.cT.(~: - ~,)T~i~Z-Z/k) at 4 = 1 

(ii) ei = 1 at 5 = 0 (9) 

where eirn = T,/Tbi and 1 < i < n. Ni is the familiar fin 
radiation-conduction interaction parameter. 

Taking the energy balance on the fluid side, we have 

Tb&x)=T,-qi/m.C, for 1 <i<n (10) 

Here the base temperature is assumed to be the fluid 
temperature at that location because of the high convective 
heat transfer rates involved on the fluid side, and qi is taken 
as the heat lost up until the ith fin plus the heat lost by the left 
surface of the fin. The two integrals for irradiation, one for the 
left surface and the other for the right surface, are evaluated 
using Gebhart’s method (Seigel and Howell 1972). 

The equation for the irradiation on right surface of the fin 
is given by 

I-S 

+ 0. T;+:(Y)* 
dFA~,+rAx, 

AX 

dF,y, - Axj T:(Y).? 

+ C1 -&)‘. 
@A, -Ax, 

gi,R(Y) * 

@A,+,-A, 
+ gi+l,L(Y) Ax d&x, - Ayi 

Ii 

+ I[ E.Q.T~+:(Y) + (1 -E).s~+~,JY) 
0 1 

’ dFA~,+, -AYZ + c.Tz.F,_AYi 

H 
+(l -E).o. 

s 

F,-AX TL.2 ’ dF,,-A,, (11) 
0 Ax 

For the left surface of the fin, 

s 

s 

AY.gi,t,(Y) = E’Q’ T& - l(x)dFAy - AyI 
0 

+ j; joH [(1 - ,)+. T;(Y).~~‘;+ 

+ o.T;-,(y) 
@A,_,-Ax,_, 

Ax 

+ t1 - &I" Si,L(Y)’ 
dFA, -Ax,-, 

Ax 

dFAyi_j-ax,_, 
+ gi-l.R(Y) Ax 

>I 
.dF,-A, 

a 

+ S[ E.u.T~-~(Y)+(~ -E).gt-i,dY). 
0 1 

X dFAy,_, -Ay, +u.T:.F,-A,,~ 
Ii 

+(l -E).CT. s T4, 
.LAX, 

Ax 
‘dF,x,-A,, (12) 

0 
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Figure 6 The two zones used in the analysis of an intermediate fin 
in the finned radiator 

The irradiation on the base given by the following equation has 
been used to arrive at the above two equations. 

I 

H 
Ax+g&) = ~.a. ~~+:(W~,,+,-~X,. 

0 

I 

If 

+&.a' T:b')'dFAy,-Axj 
0 

I 

H 

+(l -E). gi.x(Y) *dFAya-Axj 
0 

H 

+ (1 - El). 
5 

Bi+l.L(Y)‘dFAy,-Ax, 
0 

+ o.T;.F,+, 

Method of solution 

An iterative procedure for nonlinear equations has been found 
to produce quick results for the required solution of the 
integrodifferential system of equations. A flow chart showing 
the calculation scheme is given in Figure 7. There are three 
different iterations involved here, two local iterations for the 
fins individually and another global iteration for the radiator 
as a whole. The global iteration is to achieve the convergence 
for the base temperature profile, which influences the fin 
temperatures indirectly and the irradiation on the fin surfaces 
directly, which in turn determines the base temperature profile. 
Moreover, there is a loss of symmetry due to the base 
temperature variation, making the calculation of radiation 
variables for one fin alone insufficient. Consider one fin, say 
the first one in Figure 3: it receives irradiation from the ambient 
on the left side and from the second fin on the right side whose 
radiosities are as yet unknown because they in turn depend on 
the radiosities of the first fin. Hence, initial values of the 
temperature profiles are calculated for all the fins, neglecting 
mutual interaction but including base temperature variation. 
This further explains the necessity for a global iteration. The 
first of the two local iterations consists of the solution of the 
governing differential equation for each fin, which is a 
boundary-value problem and is solved by a second-order 
RUNGE-KUTTA method that has a local truncation error of 
0(/t’). The second iteration is for the convergence of the 
temperature and irradiation profiles of the fin. Here we start 
from the tip of the fin where the boundary condition is 
dO,/d~(n,) = E. u * H. (0: - em). Tii/k. Assuming a temperature 
at the tip, the Runge-Kutta procedure proceeds up to the base 
backwards. The percentage error between the boundary 
condition at the base and the calculated value of 13X0) is then 
checked to see if the difference is within the desired limits. If 
this is not so, the procedure is repeated with a different value 
for dO,/d&). Iteration is continued until the desired 
covergence is encountered. The integral equation is solved by 
the Simpson formula, which is modified to incorporate the 
evaluation of double integrals. The intervals of the two 
numerical methods used here have been selected such that their 
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respective truncation errors are the same. This was found to 
work satisfactorily without any instabilities for all calculations 
performed in the present study. In the iteration for the 
convergence for the irradiation values, the double integrals 
only need to be reevaluated in Equations 11 and 12 because 

Figure 7 Flow chart showing the calculation procedure 
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Table 1 Ranges of variables used in the present numerical study 

Quantity Values used Units 

Fluid inlet temperature, r, 350,450, 750 K 
Background temperature, T, 
Thermal conductivity, k :4 110 257 

K 

Length of the radiator, L 0.5,0.75, 1 
W/m.K 
m 

Number of fins, n 5-30 
sp. heat product, 

Emis&itv. MassCflow E 

3, 7.5, 14 W1rn.K 

0.5. 0.66. 0.75. 0.9 - 
Fin height, H 
Fin thickness, 2tx 

0.06-0.1& m 
0.0005, 0.00075 m 
0.001, 0.0015 

the rest of the terms, once evaluated, remain constant. Also to 
be noted is that for the double integrals the iteration proceeds 
first with respect to H and then with respect to S. 

To get the temperature TX y) from the differential equation 
(Equation 8), we have to know g, L(y) and giJ y). For finding 
these values, a first aproximation is made for the irradiation, 
say, that part of the incident radiation that comes from the 
ambient and this value is inserted into Equation 8. Now 
Equation 8 is solved by the above-mentioned method to get 
the temperature profile. This temperature profile and the 
approximate irradiation values taken before are introduced 
into Equations 11 and 12 to get the new value of irradiation. 
This procedure is continued until the values of T(y), gi, ,( y), and 
giJy) converge to within a specified tolerance. Thus the 
temperature and the irradiation values at all the nodes along 
the fins and the base are obtained. This procedure is repeated 
for every main iteration. 

One feature of the present solution method is the use of the 
crossed-string method for calculation of view factors because 
the fins are assumed very long in the third direction. This 
method makes a rather tedious task relatively simple. However, 
with some extra computation one can, if interested, calculate 
for a finite length in the third direction also. 

Results and discussions 

The performance of the radiator has been analyzed, with 
emphasis on the fin spacing for different material properties 
and the geometry of the radiator. The base temperature 
variation produces a change in the radiation-conduction 
interaction parameter Ni for the fins along the radiator. A 
convergence study showed that 20 nodes were sufficient for 
both the fin and the base length in the intertin space for the 
convergence of the fin temperature and of the incidence profile 
within a tolerance limit of 0.01 percent. The program was also 
checked for fins without any interfin or fin base interaction, 
and the results agreed with previous calculations of Karleker 
et al. (1963). 

The typical range of parameters taken into consideration in 
the present study is given in Table 1. The choice of the 
parameters is governed by the range of values for the 
thermophysical properties encountered in practice and is also 

guided by the fact that emissivity of the surface should be high 
for good heat transfer. Emissivity less than about 0.5 is seldom 
used, and hence we have explored the performance of the 
radiator for E >/ 0.5 only. The radiator will face away from any 
strong background-radiation sources like planets or the sun 
and is characterized by a temperature very much lower than the 
radiator surface temperature-it may effectively be considered 

as 0 K. However, the calculation may be extended for T, # 0 
with little effort. The total number of calculations that 
have been made is around 500. Each calculation takes about 
80 CPU seconds on the SIEMENS 7580E system. This set 
yields about 45 data points for obtaining the correlation for 
the maximum heat loss ratio that is presented later on. 

Temperature profiles 

Consider first the variation of base temperature along the 
radiator. The smooth profile in Figure 8 that is obtained by 
plotting the temperatures along only the base of the fins shows 
a linear variation, while the actual base temperature variation 
is far from linear and is shown by the staircaselike profile. It 
shows a linear variation in the space between the fins, while a 
steep drop is observed as we approach a fin and move away 
from it, in its immediate vicinity. As expected, the base 
temperature values increase with decreasing emissivity 
(Figure 9). 

Turning attention to the fin temperature profiles, Figure 10 
shows the temperature profiles along the fins. A consistent 
feature is that, although Ni decreases progressively with fin 
position (i.e., from fin 1 to fin 12 in Figure 10) because of the 
decrease in base temperature, the fin-temperature profile of the 
last fin (fin 12) has a steep downward trend compared to that 
of the middle fins (fins 2 to 11) but stays above that of the first 
fin (fin 1) because of its lower N, value. This is because of the 
asymmetry in the irradiation on the first and last fins. Also 
noticeable is the very small variation in temperature profiles of 
the intermediate fins. The first and last fins thus group together, 
and the intermediate fins form another goup with respect to 
the variation of temperature profiles with Ni. 

Heat loss ratio 

Figures 11 and 12 show the variation of heat-loss ratio (4) with 
the number of fins in the radiator. The general trend the graphs 
exhibit is that as more and more fins are added to the radiator, 
the heat loss ratio initially increases steeply and reaches a 
maximum and decreases gradually thereafter. The point of 
maximum 4 is the point of optimum fin number, nopT, for that 

FO.84 - 
_ Actual profile 

0.82 - .-- Smooth profde 

0.80 1, U r 19 I ‘I * I ” b 1’1 9 
0 40 80 120 160 200 240 

Distance along the radiator (node nosindicated) 

figure 8 Actual and smooth temperature profile along the radiator 
for a typical case 
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Figure 10 Temperature profile along the fin in a radiator consisting 
of 12 fins. Data set is identical to the typical case shown in Figure 8 

particular radiator-fin geometry. The presence of an optimum 
fin number is ascribed to the fact that as the number of fins is 
increased, there is an increase in the apparent emissivity due 
to the cavity effect, and a simultaneous reduction of view factors 
of the cavities to space. The temperature variation along the fin 
is affected by these two opposing factors and strikes a balance 
at nom. Calculations have shown that the heat lost from the 
first and last fins amounts to a major portion of the total heat 
lost from the radiator. It is to be stressed here that as the 
number of fins are varied, the base lengths to the left of the 
first fin and to the right of the last fin (given by S/2 in Figure 
4), with relatively low irradiation and thus capable of losing a 
significant amount of heat, also vary and thus play a significant 
role in positioning #,.. 
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It was noticed that for a given thermal conductivity &,., Figure 12 Heat loss ratio with number of fins for a radiator with 
increased with fin height. The increase in I#,. is nonlinear, different surface emissivities 

showing a tendency to stabilize after a given fin height. In fact 
for the particular case of emissivity 0.9 and number of fins 8, 
the system was found to have a &_ of 1.40 for a fin height of 
18.5 cm. The 4,. decreases with further increase in fin height. 
The emissivity, on the other hand, plays an opposite role with 
respect to fin height regarding $,,-i.e., with increasing 
emissivity there is a decrease in 4,. This is as expected, since 
the mutual interaction reduces with increasing E. However, &ax 
increases with decreasing E, indicating that the finning of the 
radiator is more effective at lower E although it loses much less 
heat. Another point to be noted is that as the number of fins 
is increased indefinitely, the heat-loss ratio goes below one 
(such cases are not shown in the figures), which means that we 
were better off with the parent surface itself before the addition 
of fins. Figure 13 shows the variation of r$ with respect to the 
radiation<onduction parameter. It is observed that a higher 
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Figure I7 Heat loss ratio variation with number of fins for a 
radiator with different material thermal conductivities 
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Figure 73 Variation of heat loss ratio with Ni obtained by varying 
fluid inlet temperature 6, 

radiation-conduction parameter has a reduced r&,,.,. This is as 
expected, since this parameter is a measure of relative resistance 
to the heat transfer by conduction in the fin compared to the 
radiation from the surface. 

Figure 14 compares the performance of the optimized 
radiator ensemble fabricated from three materials-brass, steel, 
and aluminum. The graph has been obtained by plotting the 
maximum 4 for a given fin thickness and surface emissivity of 
0.9 vs. the increase in weight due to the addition of fins. As 
expected, it clearly shows the relatively superior performance of 
aluminum over brass and steel. Also notice that steel shows a 
significant leveling off with increasing radiator weight partly 
due to the nonlinear increase in the norr with fin height and 
partly due to its very high density. This enables the designer to 
fix the limits for the satisfactory working of the system for a 
particular material. 

Correlation 

It is well known that the radiative heat loss from a fin increases 
steeply with fin thickness. Starting from zero, it reaches a local 
maximum and then the variation of heat loss with respect to 
thickness is not appreciable over a range of thicknesses (Kern 
and Kraus 1972). All the calculations done here have been made 
in this range (note that this thickness range is necessary in 
practice in order to satisfy strength requirements) so the change 
in thickness shown in Table 1 has negligible effect on the 
positioning of c$,.. . 

Out of roughly 500 data sets obtained by performing the 
calculations for all the combinations of the range of variables 
indicated in Table 1, 45 data set corresponded with optimum 
4. Though calculations have been made for lower values of 
thermal conductivity (57 W/m K), for the correlation we have 
restricted ourselves to cases of higher values of k, since the 
normally used material for space application is aluminum, 
which has a high thermal conductivity. Recognizing that c#J,,, 
should depend on the four parameters N,_,, N,+-, ropT, and 
E, a correlation was obtained for c$,.. as 

which fits the numerical data with a correlation coefficient of 
0.997. The range of various parameters are 

0.0003 < N,_c < 0.02, 0.03 < N,_, < 0.13, 

0.78 < Yopr < 4.07, 0.5 < E < 0.9 

The values of $,,,., vary between 1.04 and 1.65 over the above 
range of the governing parameters. 

A straightforward analysis yields a nondimensional heat loss 
for the unfinned radiator as 

_ ,“3] R F 
(15) 

which is always less than unity. This is so since an unfinned 
radiator can lose less heat than .s’ u. Tf” * L because of the 
temperature variation along the radiator even in the absence 
of fins. The product of c#+,,., and /I will in fact yield the actual 
nondimensional heat loss for the finned radiator in the 
optimum configuration. Thus from a design viewpoint, 
Equations 14 and 15 yield a simple method for calculating the 
performance of an optimum finned radiator once the 
thermophysical properties are fixed. The regression fit shows 
that the optimum heat loss ratio is strongly affected by both 
the fin number parameter rorr and the surface emissivity E. 

Another correlation has also been brought out to determine 
the optimum fin number parameter, ropT, as follows: 

row = 6.3 NE$.(l + &-“.2).(H/L)0.92sN~~~~3 (16) 

with an identical range of parameters as for Equation 14 and 
0.038 -=c N,_c, < 0.14. From Equation 16, noPT can be found by 
the relation noPT = (rOPT. L/H) for the particular geometry. 
This value of norr is inserted into Equation 14 to evaluate the 
corresponding &_,... 

The regression fit and the numerical data of the maximum 
heat loss ratio are in excellent agreement with a maximum error 
of +4 percent and are shown in Figure 15. There is some 
scatter however, for data obtained with higher emissivity 
values. This is explained by referring back to Figure 12, 
which shows that the variation of I$ with the number of fins is 
rather mild and yields Q, values over a range of fin numbers 
bracketing noPT close to c#J,,,.., especially for E = 0.75 and 
E = 0.9. Also the value of noPT has to be a whole number, and 
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Figure 14 Variation of maximum heat loss ratio with increase in 
weight due to the addition of fins for three different materials 
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hence 4,, is not sharply defined. This translates to an 
uncertainty, which is apparent from Figure 15. In fact, while 
using Equation 16 to determine noPT for given values of other 
parameters, it may so happen that nOpT is not a whole number. 
In that case the designer has to round off the value to the 
nearest whole number, with an attendant departure of &,, 
from the value based on Equation 15. So in essence the 
designer may use the three relations 14, 15, and 16 to find the 
approximate value of f$,,. of interest and if necessary can do 
the calculation using the formulation given to achieve greater 
accuracy. 

In order to further highlight the efficacy of the proposed 
correlation, we compare iri Table 2 the values of noPT and &,,., 
obtained from the computed data set and the correlation, 
respectively, for extreme values of parameters shown therein. 
The calculated values from the correlation and the numerical 
data are in very close agreement, and hence the correlation 
mirrors the variation of &,,,, and noPT with the various 
parameters very well. Note particularly that the variation with 
respect to E in Equation 16 is not of the power-law type. 
Regression using a power-law type gave decidedly poorer fits. 
A detailed analysis of the data sets with different E values finally 
yielded the factor (1 + c-0.2) in Equation 16. Thus we can use 
the proposed correlation with confidence for obtaining the 
weight-optimized design for the radiator, as will be done below. 
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Weight optimization of the radiator 

The whole optimization procedure followed above is from 
thermal point of view, and is only a partial optimization since 
there is a weight increase as a penalty. A weight optimization 
is therefore called for, but it is highly involved, and the 
conventional methods do not work because of the increased 
number of degrees of freedom introduced by the nonisothermal 
base. Even if one were to do this, it is well known that the 
minimum-weight fin will be so thin as to be impossible to 
fabricate, and hence in actual practice it will be limited by the 
strength of the material to withstand the working conditions 
(see Mackay 1963). Consequently, the present procedure can be 
used effectively to find the optimum design by using the 
correlation given above. This can be carried out in two ways: 
(1) minimum weight for the dissipation of a desired quantity 
of heat, and (2) maximum heat loss for a particular weight 
addition. 

For the first case, once the thermophysical properties are 
fixed, the value of ram is found from Equation 14, fixing a 
small value for H. This value of rOPT yields a value of nOPT that 
is then rounded off to the nearest whole number. Now 
a minimum required thickness for sufficient strength is selected, 
and the weight of the fins are found. The procedure is repeated 
step by step for different heights, and the respective weights are 
found. This one set of calculations will result in a minimum 
weight that will give the optimum weight addition for the 
desired performance. This method is illustrated in Figure 16 
for two different sets of conditions. For each set it can be seen 
that there exists a minimum weight configuration (indicated by 
points A and B in Figure 16) that gives optimum design. In fact, 
if the thickness of the fin is kept constant for increasing heights, 
one can observe a downward trend for the mass added (shown 
by dashed line+-which is not practicable, since a longer fin 
should be thicker to withstand its own weight and the flight 
conditions. Therefore, in actual practice the thickness should 
be varied with height of the fin so as to satisfy the strength 
criteria. For example, of the two curves, one corresponds to a 
4 max of 1.30. Here initially, a fin thickness of 0.5 mm is assumed 
for the first five heights (3, 4, 5, 6, and 7 cm) and is increased 
in steps of 0.05 mm thereafter. 

In the second method, rOPT is found by using Equation 16, 
and the corresponding nopT. value is rounded off to a whole 
number as before. Calculations begin with a small value of H 

that is to be increased step by step. For each step, 4,,,., and 
the thickness of the fin are found by using Equation 14 and 
the known weight addition. In this procedure, one again 
chooses a combination that will give a comparatively high 
value for $,.,, with the thickness not less than that which will 
be unacceptable from the strength consideration. This 
configuration is taken as the optimum design for maximum 4. 
Figure 17 shows the variation of &,,, with addition of weight. 

Table 2 Comparison of numerical data and calculation based on correlation for extreme values of some of the governing parameters 

Numerical data From correlation 

& T”‘K 4 1, n0m 4 max nom* 4 n-lax 

ii 
350 3:: 

0.060 0.50 12 1.60 1.59 

0:5 0.060 0.185 0.50 1 .oo :: 1.42 1.44 :t 13 1.41 1.44 
::9” 3:: 0.185 12 

8:: 750 350 8% 0.060 

A.E 

0:50 1 .oo 

1.29 1.21 :f 1.21 1.29 

1.08 1.10 :: 1.07 1.09 

l These values are rounded off as suggested in the text 
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figure 16 Minimum weight design for a given heat load using 
aluminum fins. The minimum weight points are represented by X 

It can be observed that the increase of $,,, is very steep 
initially, but after a particular value of mass addition (indicated 
by X) is very nominal and is not worth adding. This point is 
referred to as the optimum configuration for a radiator system. 
However, a thicker fin is used in this case than in the examples 
considered in Figure 16, and this effectively increases the added 
weight for comparatively the same value of I$,.,. 

Conclusions 

The above analysis for a finned radiator has shown the 
existence of an optimum number of fins for achieving a 
maximum heat loss ratio. The numerical data have been used 
to arrive at a useful correlation for determining 4,,,., in terms 
of the two interaction parameters N,_c and N,_c, a scaled fin 
number parameter r,,, and the surface emissivity E. Further 
work is to be directed towards cases involving fins of 
nonuniform area. Also of interest would be tubular radiators 
with circumferential fins, which probably are more suitable for 
application where available space is limited. The weight- 
optimization study in these cases will be a challenging one. 
Work is ongoing in this area, and the results will be published 
elsewhere. 

The analysis presented in this paper can be studied by taking 
into account the fluid-side heat transfer coefficient. The equality 
of the wall and fluid temperature is certainly a limiting situation 
valid for a very high heat transfer coefficient on the fluid side. 
As indicated in the paper, a liquid-metal situation will 
correspond to this. The temperature at entry also has been 
chosen in the range 350-900 K, in view of this. For situations 
other than these, the temperature of the wall and fluid are 
certainly different. These can be taken into account without 
much difficulty. It involves, however, an additional parameter 
given by h/m. C, (h = fluid-side heat transfer coefficient). It is 
not difficult to assume an average fluid-side heat transfer 
coefficient and to do the calculations. In fact, such calculations 
have shown that the dependence of &,,. on heat transfer 
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A: H = ‘9.0 cm 2t = ?.4 mm, nwT = 12 
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figure 7 7 Distribution of q$,,., with respect to weight addition for 
aluminum-finned radiator. The optimum configurations are shown 

by X 

coefficient is not very appreciable. The results presented here 
may be used if the value of h/m. C, is greater than 200. 
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